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We present a thorough derivation of the excited-state energy levels of the negatively charged 15N-V− center
in diamond for the strong applied electric-field case. We show that in the 15N-V− center a spin nonconserving
two-photon � transition exists that is mediated by the hyperfine interaction, which provides the possibility to
write quantum information. Using second-order perturbation theory we obtain a � transition rate of the order
of 10 MHz at room temperature, which allows for approximately 104 quantum logic operations within the spin
coherence time �d�T=300 K��1 ms of the 15N-V− center.
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Recently tremendous attention has been drawn by single
nitrogen-vacancy defect centers �N-V centers� in diamond
due to their promising properties for the experimental real-
ization of quantum computation.1 In particular, the N-V cen-
ter in diamond is well suited for studying electronic and
nuclear-spin phenomena since its spin can be both initialized
and read out via a stable optical spin conserving
transitions.2,3 The N-V center appears in two forms, neutral
and negatively charged, and it is the negatively charged cen-
ter �N-V−� that we are interested with in this rapid commu-
nication. The N-V− stands out among solid-state systems be-
cause its electronic spin can be efficiently prepared,
manipulated and measured with optical and microwave exci-
tations. Recent experiments have conclusively demonstrated
that the N-V center in ultrapure diamond lattice shows the
longest room-temperature spin dephasing time ever observed
in solid-state systems �T2=1.8 ms�.4 The electron-spin co-
herence lifetime in the N-V− center is limited by its hyperfine
interaction with the Carbon lattice in the diamond structure.5

At very low concentration of paramagnetic impurities the
loss of electron-spin coherence is minimized and spin quan-
tum effects could be observed at room temperature over hun-
dred of nanometers, these results open the door to coherent
manipulation of individual isolated nuclear spins in a solid-
state environment at room temperature with potential appli-
cations to quantum computation, therefore the understanding
of the hyperfine interaction in this solid-state system is of
great interest.

In this rapid communication we show how the hyperfine
interaction gives rise to a spin nonconserving two-photon �
transition with a rate of the order of 10 MHz at room tem-
perature, which allows for approximately 104 optically con-
trolled quantum logic operations within the spin coherence
time at room temperature. The � transition can be under-
stood by considering the hyperfine interaction of the elec-
tron’s spin in the N-V− center with the spin-1/2 nucleus of
the isotope Nitrogen 15N. A quantitative result for the num-
ber of quantum logic operations is obtained by using second-
order perturbation theory and numerical diagonalization of
the Hamiltonian describing the excited energy levels of the
15N-V− center when an external electric field is applied. Our
results clarify the origin of the two-photon transitions that

have been experimentally observed in Refs. 6 and 7.
The N-V center in diamond consists of a substitutional

nitrogen atom next to a Carbon vacancy giving a centre with
C3v symmetry. In the negatively charged state, the extra elec-
tron is located at the vacancy site forming a spin S=1 pair
with one of the vacancy electrons. The energy-level structure
of the N-V− center was established by combining optical
electron-paramagnetic resonance and theoretical results. Le-
nef and Rand earlier work gave a group theoretical descrip-
tion of the molecular orbitals and state configuration of the
N-V− center by using linear combinations of sp3 orbitals.8

Recent numerical ab intio calculations conducted by Hossain
et al. indicated the following orthonormal orbitals which ir-
reducibly transform according to the C3v symmetry group:
u=sN, v= �s1+s2+s3−3�sN� /�3S1, ex= �2s3−s1−s2� /�3S2,
ey = �s1−s2� /S2, where sN, s1, s2, and s3 denote sp3 orbitals
pointing to the Nitrogen and three Carbons neighboring the
vacancy, S1=�1+2�−3�2, S2=�2−2�, �= �s1 �s2� and �
= �s3 �u� are normalization constants.9 The energy levels are
traditionally labeled according to the orbital and spin multi-
plicity, which is related to the number of states having the
same energy. For the negatively charged N-V center, the
ground state is a spin triplet state 3A2, with a zero-field split-
ting of Dgs=2.87 GHz between spin sublevels ms=0 and
ms= �1 �see Fig. 1�.

The excited-state 3E is also a spin triplet, associated with
a broadband photoluminescence emission with zero-phonon
line at 1.945 eV, which allows optical detection of single
N-V defects using confocal microscopy. It is now well estab-

FIG. 1. Schematic diagram for the energy levels of an NV−

center depicting the spin triplets for the ground state 3A2 and the
excited-state 3E. The splitting due to spin-orbit interaction is shown
for the excited state.
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lished that a metastable state 1A1 is place between the
ground and excited triplet states.10 Although an extensive
documentation have been made to unveil the excited-state
structure of the N-V center from first principles, it remains a
topic of current research due to its possible quantum
applications.11

The Hamiltonian suitable to describe the 3E excited state
of the negatively charged 15N-V− center is given by12

H = Hel + �L · S + ���L · S�2 +
1

2
L · S −

1

3
L�L + 1�S�S + 1�	

+ AI · S . �1�

The first term in Eq. �1� is the dominant term in the Hamil-
tonian and is given by Hel=F ·D, where F is the external

applied electric field in the N-V defect and D is the dipole
moment operator, respectively. From earlier work done by
Hossain et al. we know that the only nonzero dipole mo-
ments components are Dex

and Dey
with equal dipole magni-

tudes, i.e., �Dex
�= �Dey

�=D, respectively. The dipole moment
transverse terms cause a linear splitting of the degenerate 3E
state levels given by �D��Fx+ fx�2+ �Fy + fy�2,12 where we
have taken into account that the presence of strain has the
same effect as a weak electric field denoted by f. The second
and third terms in Eq. �1� describe the spin-orbit and the
spin-spin interaction in the LS coupling approximation,13 re-
spectively.

With this information and restricting ourselves to the ml
= �1 state sublevels of the spin triplet we can write the
electric field, the spin-orbit and spin-spin interactions in the
following matrix form

Hel + Hss + Hso =

− � + 13

6 � iD�fy + Fy� 0 0 0 �

− iD�fy + Fy� � + 13
6 � 0 0 0 0

0 0 − 1
3� iD�fy + Fy� 0 0

0 0 − iD�fy + Fy� − 1
3� 0 0

0 0 0 0 � + 13
6 � iD�fy + Fy�

� 0 0 0 − iD�fy + Fy� − � + 13
6 �

� � �1 0

0 1
 , �2�

where we have chosen the basis �mlms� in the following order
��−11� , �−1−1� , �−10� , �10� , �11� , �1−1�� for numerical pur-
poses and we have assumed that the electric field is applied
in the y direction. The direct product between matrices takes
into account the nuclear-spin subspace, i.e., mI= �1 /2.

One can see that the spin-orbit interaction does not couple
terms with different orbital projections and produces just an
energy splitting between the states ms= �1. The spin-spin
interaction however couples the first and the last state with
different orbital projections and produces an energy splitting
between the states ml= �1. The Hamiltonian given in Eq.
�2� can be solved exactly and it is easy to convince oneself
from the exact solution that there is no overlapping between
eigenstates with different spin projections. Hence, the spin-
orbit and spin-spin interaction cannot account for the mixing
of the excited states and therefore cannot give rise to spin
nonconserving transitions. If we want to allow for spin non-
conserving transitions between one ground state and another
via a common excited state we must introduce the nuclear-
spin interaction. The hyperfine interaction will mix the
eigenstates with different spin projections allowing us to
have a transition to two different ground states. This particu-
lar transition is a second-order process that can be calculated
by using Fermi’s golden rule and is commonly known as a �
transition. Therefore, the last term in the total Hamiltonian
given in Eq. �1� is the nuclear-spin interaction and this term
will be responsible for the mixing of the excited states,
which will give rise to � transitions in the 15N-V− center in

diamond. The hyperfine interaction can be written in the
above basis as

Hns = A

1
2 0 0 0 0 0 0 0 0 0 0 0

0 − 1
2 0 0 �2 0 0 0 0 0 0 0

0 0 − 1
2 0 0 �2 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0

0 �2 0 0 0 0 0 0 0 0 0 0

0 0 �2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 �2 0 0

0 0 0 0 0 0 0 0 0 0 �2 0

0 0 0 0 0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 �2 0 0 − 1
2 0 0

0 0 0 0 0 0 0 �2 0 0 − 1
2 0

0 0 0 0 0 0 0 0 0 0 0 1
2

� ,

�3�

where A is the excited-state hyperfine coupling constant
which for the 15N nuclear-spin case is A�60 MHz.14 The
eigenvalues of the total Hamiltonian given by Eq. �1� are
plotted as a function of the electric field in Fig. 2. The energy
diagram in Fig. 2 shows the mixing between the states ms
= �1. This mixing will allow us to induce � transitions be-
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tween these states in order to write quantum information by
using circularly polarized light. The 15N-V− center has opti-
cal transitions between the ground state 3A2 and the excited-
state 3E at zero magnetic field that are spin conserving and
will allow the readout of information through the electron’s
spin.12 In order to write information we need to have optical
transitions from two ground-state levels via a common ex-
cited state. The induced transition probabilities for the case
of circularly polarized light around the z-axis is denoted by
	� and is proportional to the modulus squared of the matrix
element given by �
i�	��
 j�, where 
i and 
 j are electronic
wave functions for the initial and final state, respectively, and
	�= ��n�xn� iyn� /�2, where the summation are over the
electrons in the N-V− center.

Suppose that in the absence of light the 15N-V− system is
prepared in the ground state �mlms��mI�= �00��↑ �. If a strong
external electric field with magnitude F0 is applied and the
crossing between different states occur at a given energy �n
for the nth excited state as illustrated in Fig. 2, then the
ground state will be coupled to an excited state given by

�n� = �
ml=�1,ms=0,�1,mI=↑,↓

CmlmsmI

n �mlmsmI� . �4�

The coherent superposition of states given in Eq. �4� allows
the possibility to have optical transitions between two
ground states with different spin projections, i.e. spin non-
conserving transitions, by using either a right or left circu-
larly polarized light. In order for the final total angular mo-
mentum to equal the initial angular momentum, the nuclear
spin projection flips �see Fig. 3�. The amplitude A� for the �
transition in the dipole approximation from the initial state
�00��↑ � to the final state �01��↓ � through either right or left
circularly polarized light is given in second-order perturba-
tion theory by

A� = e2E2�
n=1

12 �↓��01�	��n��n�	��00��↑�
�	� − ��n − �0�

, �5�

where e is the electron charge, E is the amplitude of the drive
optical field, �0 is the energy of the initial ground state and

�	� is the frequency of the circularly right or left polarized
light, respectively. Writing the explicit form of �n� in terms
of the basis vectors in Eq. �5� we get

A� = e2E2�
n=1

12
C�11↓

n 	0,�1
� C�10↑

n� 	�1,0
�

�	� − ��n − �0�
, �6�

where �i�	��j�=	i,j
�. The value of the CmlmsmI

n coefficients and
eigenvalues �n can be obtained by numerical diagonalization
of the total Hamiltonian for a given value of the applied
external electric field F0 �see Table I�. In the subsequent
calculations we will work with right circularly polarized
only. In order to calculate the transition rate between the
initial ground state and the final ground state we use Fermi’s
golden rule

W�00��↑�→�01��↓� =
2�

�4 �A�2���� , �7�

where ���� represents the allowed photon frequencies and
can be written in its simplest form as a Lorentzian function

TABLE I. Numerical values for the coefficients CmlmsmI

n and ei-
genvalues �n of the excited state levels that contribute to the tran-
sition amplitude A� for the case F0=1.85 MV /m �Ref. 15�.

n
�n

�GHz� C−11↓
n C−10↑

n C10↑
n C11↓

n

1 12.8540 0.5633 0.0056 −i0.0021 i0.3965

2 12.8540 −0.1011 −0.0010 −i0.0004 −i0.0712

3 12.4179 0.5754 0.0292 −i0.0285 −i0.3770

4 12.4179 −0.1540 −0.0078 −i0.0076 i0.1009

5 −11.3719 −0.1261 0.08755 i0.0879 −i0.2099

6 −11.3719 −0.3276 0.2274 i0.2282 −i0.5452

7 −11.1861 −0.2090 −0.6498 −i0.6502 −i0.1005

8 −11.1861 −0.0050 −0.0157 −i0.0157 −i0.0024

9 −11.1448 −0.3864 0.1344 i0.1306 i0.5767

10 −11.1448 0.0243 −0.0084 −i0.0082 −i0.0362

11 10.9909 0.0047 −0.1201 i0.1201 −i0.0021

12 10.9909 −0.0271 −0.6961 −i0.6962 i0.0122

1 2 3 4

-20

-10

10

20

FIG. 2. �Color online� Energy diagram showing the eigenvalues
of the total Hamiltonian given in Eq. �1� as a function of the applied
external electric field. The lower branch shows the mixing between
the states ms= �1. The eigenvalues are doubly degenerate.

FIG. 3. The � transition optically driven with 	+-polarized laser
beams will flip the nuclear-spin projection in order for total angular
momentum to be conserved. The � transition will equally populate
both ground-state levels due to the twofold degeneracy between
them.
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���� =
��/2��

��	+ − �	+� − ��0� − �0��2 + ��/2�2
, �8�

where �0� is the energy of the final ground state and
� is the decoherence rate. For the resonant case, i.e. �	+

−�	+� = ��0�−�0�, Fermi’s golden rule is given by
W�00��↑�→�01��↓�=4�A�2 /��4. Taking the value of the dipole mo-
ment matrix elements as e	0,−1

+ =e	1,0
+ = �d� in Eq. �6� we get

A = �2�R
2�

n=1

12
C−11↓

n C10↑
n�

�n
, �9�

where �n=�	+ − ��n−�0� is the detuning and we have used
the relation E�d�=��R where �R is the Rabi frequency. In
order for perturbation theory to be valid we require that
��n���R�C10↑

n� �, hence we have to tune the frequency �	+ to
achieve this. Assuming that the detuning is taken in such a
way that ��n��30�R�C10↑

n� �, where the Rabi frequency is a
few GHz,16 then the amplitude is �A�2�10−27�4�R

4 . Using
the spin coherence time of �−1�1 ms,4 we can estimate the
� transition rate to be of the order of

W�00��↑�→�01��↓� � 10 MHz. �10�

Based on the obtained transition rate and for coherence life-
times of around the milliseconds,4 we estimate that the
15N-V− center in diamond should be capable of around 104

quantum operations per coherence lifetime at room tempera-
ture, which confirms that this solid-state system is a very
good candidate for quantum computing.17

Suppose now that we can prepare the 15N-V− center in
such a way that all the spin population is in the ground-state
level ms= �0�. We have shown that an optically driven �
transition will change the nuclear-spin projection because of
the spin nonconserving transition. Therefore if we optically
pump the ground-state level so that we have a � transition of
the form �ms=0�→ �ms= �1�, then the ground-state popula-

tion will transfer according to the two possible � transitions
�ms=0��↑ �→ �ms= �1��↓ � or �ms=0��↓ �→ �ms= �1��↑ �,
with flipped nuclear-spin projection �see Fig. 3�. Note that
both � transitions are completely independent from each
other. Then, by means of resonance condition, it is possible
to produce an arbitrary superposition of the form
�w�=��ms=0�+��ms=1�, which represents the qubit.

In order to read this superposition state the electric field
Fy needs to be switched off, leading to A=0. This means that
for Fy =0 and weak strain the two-photon transitions are spin
conserving, which allows for the detection e.g. ���2 through
the linear response to a 	+-polarized laser beam. Single-qubit
operations of the qubit state �w� can be performed by means
of the spin conserving and spin nonconserving transitions,
which give rise to phase and amplitude shifts, respectively.

Although our theoretical results have been applied for the
N-V centers containing a 15N atom �I=1 /2�, our model
works analogously for 14N�I=1�, where � transitions of the
form �ms=0��mI= �1�→ �ms= �1��mI=0� are achievable at
room temperature. Note that this theoretical result proves
that the physical process responsible for the � transition is
the hyperfine interaction, which allows the spin nonconserv-
ing transitions in the N-V center in diamond.

In conclusion, we have demonstrated that there exists a �
transition in 15N-V− center in diamond that is mediated by
the hyperfine interaction which allows us to write quantum
information in this solid-state system. Readout can be per-
formed when the electric field is tuned to spin conserving
transitions. Our findings clarify the origin of the two-photon
transitions observed in Refs. 6 and 7, which is essential for
the development of a scalable quantum network made of
15N-V− centers in diamond, given the possibility to produce a
photonic crystal structure in diamond.18,19
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